A mountain-induced moist baroclinic wave test case for the dynamical cores of atmospheric general circulation models
Idealized test cases for the dynamical cores of atmospheric general circulation models are informative tools to assess the accuracy of the numerical designs and investigate the general characteristics of atmospheric motions. A new test case is introduced that is built upon a baroclinically unstable...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2023-11, Vol.16 (22), p.6805-6831 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Idealized test cases for the dynamical cores of atmospheric general circulation models are informative tools to assess the accuracy of the numerical designs and investigate the general characteristics of atmospheric motions. A new test case is introduced that is built upon a baroclinically unstable base state with an added orographic barrier. The topography is analytically prescribed and acts as a trigger of both baroclinic Rossby waves and inertia–gravity waves on a rotating, regular-sized planet. Both dry and idealized moist configurations are suggested. The latter utilizes the Kessler warm-rain precipitation scheme. The test case enhances the complexity of the existing test suite hierarchy and focuses on the impacts of two midlatitudinal mountain ridges on the circulation. Selected simulation examples from four dynamical cores are shown. These are the Spectral Element and Finite Volume dynamical cores, which are part of the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM), versions 2.1.3 and 2.2, and the Cubed-Sphere Finite Volume dynamical cores, which is new to CESM version 2.2. In addition, the Model for Prediction Across Scales (MPAS) is tested. The overall flow patterns agree well in the four dynamical cores, but the details can vary greatly. The examples highlight the broad palette of use cases for the test case and reveal physics–dynamics coupling issues. |
---|---|
ISSN: | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
DOI: | 10.5194/gmd-16-6805-2023 |