(Sub-)Picosecond Surface Correlations of Femtosecond Laser Excited Al-Coated Multilayers Observed by Grazing-Incidence X-ray Scattering

Femtosecond high-intensity laser pulses at intensities surpassing 10 W/cm can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-06, Vol.14 (12), p.1050
Hauptverfasser: Randolph, Lisa, Banjafar, Mohammadreza, Yabuuchi, Toshinori, Baehtz, Carsten, Bussmann, Michael, Dover, Nicholas P, Huang, Lingen, Inubushi, Yuichi, Jakob, Gerhard, Kläui, Mathias, Ksenzov, Dmitriy, Makita, Mikako, Miyanishi, Kohei, Nishiuchi, Mamiko, Öztürk, Özgül, Paulus, Michael, Pelka, Alexander, Preston, Thomas R, Schwinkendorf, Jan-Patrick, Sueda, Keiichi, Togashi, Tadashi, Cowan, Thomas E, Kluge, Thomas, Gutt, Christian, Nakatsutsumi, Motoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Femtosecond high-intensity laser pulses at intensities surpassing 10 W/cm can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS). Using aluminium-coated multilayer samples we distinguish between sub-picosecond (ps) surface morphology dynamics and subsequent multi-ps subsurface density dynamics with nanometer-depth sensitivity. The observed subsurface density dynamics serve to validate advanced simulation models representing matter under extreme conditions. Our findings promise to open new avenues for laser material-nanoprocessing and high-energy-density science.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14121050