Spherical k -Means Clustering
Clustering text documents is a fundamental task in modern data analysis, requiring approaches which perform well both in terms of solution quality and computational efficiency. Spherical k-means clustering is one approach to address both issues, employing cosine dissimilarities to perform prototype-...
Gespeichert in:
Veröffentlicht in: | Journal of statistical software 2012-09, Vol.50 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clustering text documents is a fundamental task in modern data analysis, requiring approaches which perform well both in terms of solution quality and computational efficiency. Spherical k-means clustering is one approach to address both issues, employing cosine dissimilarities to perform prototype-based partitioning of term weight representations of the documents.This paper presents the theory underlying the standard spherical k-means problem and suitable extensions, and introduces the R extension package skmeans which provides a computational environment for spherical k-means clustering featuring several solvers: a fixed-point and genetic algorithm, and interfaces to two external solvers (CLUTO and Gmeans). Performance of these solvers is investigated by means of a large scale benchmark experiment. |
---|---|
ISSN: | 1548-7660 1548-7660 |
DOI: | 10.18637/jss.v050.i10 |