Investigating Possible Correlations between Gamma-Ray and Optical Lightcurves for TeV-Detected Northern Blazars over 8 Years of Observations

Blazars are a subclass of active galactic nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to photons having energies bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Galaxies 2023-07, Vol.11 (4), p.81
Hauptverfasser: Acharyya, Atreya, Sadun, Alberto C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blazars are a subclass of active galactic nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to photons having energies between 20 MeV and 2 TeV, and is capable of scanning the entire gamma-ray sky every three hours. Despite the remarkable success of the Fermi mission, many questions still remain unanswered, such as the site of gamma-ray production and the emission mechanisms involved. The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a high cadence all sky survey system optimized to be efficient for finding potentially dangerous asteroids, as well as in tracking and searching for highly variable and transient sources, such as AGN. In this study, we investigate possible correlations between the Fermi-LAT observations in the 100 MeV–300 GeV energy band and the ATLAS optical data in the R-band, centered at 679 nm, for a sample of 18 TeV-detected northern blazars over 8 years of observations between 2015 and 2022. Under the assumption that the optical and gamma-ray flares are produced by the same outburst propagating down the jet, the strong correlations found for some sources suggest a single-zone leptonic model of emission.
ISSN:2075-4434
2075-4434
DOI:10.3390/galaxies11040081