Fibronectin and vitronectin alleviate adipose-derived stem cells senescence during long-term culture through the AKT/MDM2/P53 pathway
Cellular senescence plays a role in the development of aging-associated degenerative diseases. Cell therapy is recognized as a candidate treatment for degenerative diseases. To achieve the goal of cell therapy, the quality and good characteristics of cells are concerned. Cell expansion relies on two...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-06, Vol.14 (1), p.14242-12, Article 14242 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cellular senescence plays a role in the development of aging-associated degenerative diseases. Cell therapy is recognized as a candidate treatment for degenerative diseases. To achieve the goal of cell therapy, the quality and good characteristics of cells are concerned. Cell expansion relies on two-dimensional culture, which leads to replicative senescence of expanded cells. This study aimed to investigate the effect of cell culture surface modification using fibronectin (FN) and vitronectin (VN) in adipose-derived stem cells (ADSCs) during long-term expansion. Our results showed that ADSCs cultured in FN and VN coatings significantly enhanced adhesion, proliferation, and slow progression of cellular senescence as indicated by lower SA-β-gal activities and decreased expression levels of genes including p16, p21, and p53. The upregulation of integrin α5 and αv genes influences phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), and AKT proteins. FN and VN coatings upregulated AKT and MDM2 leading to p53 degradation. Additionally, MDM2 inhibition by Nutlin-3a markedly elevated p53 and p21 expression, increased cellular senescence, and induced the expression of inflammatory molecules including HMGB1 and IL-6. The understanding of FN and VN coating surface influencing ADSCs, especially senescence characteristics, offers a promising and practical point for the cultivation of ADSCs for future use in cell-based therapies. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-65339-z |