Absence of Repetitive Correlation Patterns Between Pairs of Adjacent Neocortical Neurons in vivo

Neuroanatomy suggests that adjacent neocortical neurons share a similar set of afferent synaptic inputs, as opposed to neurons localized to different areas of the neocortex. In the present study, we made simultaneous single-electrode patch clamp recordings from two or three adjacent neurons in the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neural circuits 2019-07, Vol.13, p.48-48
Hauptverfasser: Mogensen, Hannes, Norrlid, Johanna, Enander, Jonas M D, Wahlbom, Anders, Jörntell, Henrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuroanatomy suggests that adjacent neocortical neurons share a similar set of afferent synaptic inputs, as opposed to neurons localized to different areas of the neocortex. In the present study, we made simultaneous single-electrode patch clamp recordings from two or three adjacent neurons in the primary somatosensory cortex (S1) of the ketamine-xylazine anesthetized rat to study the correlation patterns in their spike firing during both spontaneous and sensory-evoked activity. One difference with previous studies of pairwise neuronal spike firing correlations was that here we identified several different quantifiable parameters in the correlation patterns by which different pairs could be compared. The questions asked were if the correlation patterns between adjacent pairs were similar and if there was a relationship between the degree of similarity and the layer location of the pairs. In contrast, our results show that for putative pyramidal neurons within layer III and within layer V, each pair of neurons is to some extent unique in terms of their spiking correlation patterns. Interestingly, our results also indicated that these correlation patterns did not substantially alter between spontaneous and evoked activity. Our findings are compatible with the view that the synaptic input connectivity to each neocortical neuron is at least in some aspects unique. A possible interpretation is that plasticity mechanisms, which could either be initiating or be supported by transcriptomic differences, tend to differentiate rather than harmonize the synaptic weight distributions between adjacent neurons of the same type.
ISSN:1662-5110
1662-5110
DOI:10.3389/fncir.2019.00048