Functions represented into fractional Taylor series

Fractional Taylor series are studied. Then solutions of fractional linear ordinary differential equations (FODE), with respect to Caputo derivative, are approximated by fractional Taylor series. The Cauchy-Kowalevski theorem is proved to show the existence and uniqueness of local solutions for FODE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ITM web of conferences 2019, Vol.29, p.1017
Hauptverfasser: Groza, Ghiocel, Jianu, Marilena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fractional Taylor series are studied. Then solutions of fractional linear ordinary differential equations (FODE), with respect to Caputo derivative, are approximated by fractional Taylor series. The Cauchy-Kowalevski theorem is proved to show the existence and uniqueness of local solutions for FODE with Cauchy initial data. Sufficient conditions for the global existence of the solution and the estimate of error are given for the method using fractional Taylor series. Two illustrative numerical examples are given to demonstrate the validity and applicability of this method.
ISSN:2271-2097
2431-7578
2271-2097
DOI:10.1051/itmconf/20192901017