Dual-Polarized Dipole Antenna with Wideband Stable Radiation Patterns Using Artificial Magnetic Conductor Reflector

This paper presents a wideband dual-polarized dipole antenna structure operating at 1.7-3.8 GHz (76.4%). For a traditional 4G dipole antenna that covers the band 1.71-2.69 GHz, it is difficult to maintain the satisfactory impedance matching and normal stable radiation patterns within the 5G sub-6 GH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (12), p.3911
Hauptverfasser: Lin, Xianjing, Mai, Jielin, He, Hongjun, Zhang, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a wideband dual-polarized dipole antenna structure operating at 1.7-3.8 GHz (76.4%). For a traditional 4G dipole antenna that covers the band 1.71-2.69 GHz, it is difficult to maintain the satisfactory impedance matching and normal stable radiation patterns within the 5G sub-6 GHz band 3.3-3.8 GHz, mainly due to the fixed antenna height no longer being a quarter-wavelength. To solve this, a connected-ring-shaped metasurface structure is proposed and deployed to operate as an artificial magnetic conductor (AMC). As a result, stable antenna radiation patterns are obtained within the whole band 1.7-3.8 GHz. For verification, this wideband dipole antenna using AMC is implemented and tested. The measured results show that the proposed antenna has an impedance bandwidth of 80.7% (1.7-4.0 GHz). It has an average measured in-band realized gain of 7.0±1.0 dBi and a stable 70±5 half power beam width (HPBW) within the 4G/5G-sub 6GHz bands 1.71-2.69 GHz and 3.3-3.8 GHz.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24123911