Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer’s Disease Neurons by Imposed External Cys/CySS Redox Shifts
Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD + ) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2019-08, Vol.9 (1), p.11274-13, Article 11274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD
+
) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer’s disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer’s neurons. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-47582-x |