Rapid, systematic updating of movement by accumulated decision evidence

Acting in the natural world requires not only deciding among multiple options but also converting decisions into motor commands. How the dynamics of decision formation influence the fine kinematics of response movement remains, however, poorly understood. Here we investigate how the accumulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-12, Vol.15 (1), p.10583-19
Hauptverfasser: Molano-Mazón, Manuel, Garcia-Duran, Alexandre, Pastor-Ciurana, Jordi, Hernández-Navarro, Lluís, Bektic, Lejla, Lombardo, Debora, de la Rocha, Jaime, Hyafil, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acting in the natural world requires not only deciding among multiple options but also converting decisions into motor commands. How the dynamics of decision formation influence the fine kinematics of response movement remains, however, poorly understood. Here we investigate how the accumulation of decision evidence shapes the response orienting trajectories in a task where freely-moving rats combine prior expectations and auditory information to select between two possible options. Response trajectories and their motor vigor are initially determined by the prior. Rats movements then incorporate sensory information in less than 100 ms after stimulus onset by accelerating or slowing depending on how much the stimulus supports their initial choice. When the stimulus evidence is in strong contradiction, rats change their mind and reverse their initial trajectory. Human subjects performing an equivalent task display a remarkably similar behavior. We encapsulate these results in a computational model that maps the decision variable onto the movement kinematics at discrete time points, capturing subjects’ choices, trajectories and changes of mind. Our results show that motor responses are not ballistic. Instead, they are systematically and rapidly updated, as they smoothly unfold over time, by the parallel dynamics of the underlying decision process. The link between the dynamics of decision formation and movement is unclear. Here the authors reveal a tight relationship between evidence accumulation during perceptual decisions and response trajectories observed in rats and humans.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53586-7