Study on the Impact of Air Pressure on the Laser-Induced Breakdown Spectroscopy of Intumescent Fireproof Coatings

Intumescent fireproof coatings protect steel structures and cables by forming a thick, fire-resistant layer under high temperatures. These coatings can deteriorate over time, impacting their fire resistance. Current testing methods are largely lab-based, lacking in-service evaluation platforms. Lase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-10, Vol.14 (19), p.8765
Hauptverfasser: Wang, Jun, Jian, Honglin, Wang, Shouhe, Zhang, Fengzhen, Wang, Xilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intumescent fireproof coatings protect steel structures and cables by forming a thick, fire-resistant layer under high temperatures. These coatings can deteriorate over time, impacting their fire resistance. Current testing methods are largely lab-based, lacking in-service evaluation platforms. Laser-Induced Breakdown Spectroscopy (LIBS) is emerging as a promising in situ detection technology but is influenced by low air pressure in high-altitude areas. This study investigates how air pressure affects LIBS signals in intumescent coatings on galvanized steel. Using pressures between 35 and 101 kPa, a linear model was developed to correlate laser pulses to ablation depth for characterizing coating thickness. Results show that spectral intensity decreases with lower air pressure. However, a strong linear relationship persists between laser pulses and ablation depth, with a fitting accuracy above 0.9. The coating thickness is identified by the number of laser pulses required to detect the Zn spectral line from the underlying galvanized steel. As air pressure decreases, the ablation depth increases. The study effectively models and corrects for air pressure effects on LIBS data, enabling its application for field detection of fireproof coatings. This advancement enhances the reliability of LIBS technology in assessing the fire performance of these materials, providing a reference for their in situ evaluation and ensuring better fire safety standards for building steel structures and cables.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14198765