Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism

Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-01, Vol.11 (1), p.66-66, Article 66
Hauptverfasser: Cui, Bin, Zheng, Xingwen, Wang, Jianfeng, Liu, Desheng, Xie, Shijie, Huang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly determine the electronic and topological properties of a Lieb lattice. Importantly, based on first-principles calculations, we predict that the two existing covalent organic frameworks (COFs), i.e., sp 2 C-COF and sp 2 N-COF, are actually the first two material realizations of organic-ligand-based Lieb lattice. Interestingly, the sp 2 C-COF can experience the phase transitions from a paramagnetic state to a ferromagnetic one and then to a Néel antiferromagnetic one, as the carrier doping concentration increases. Our findings not only confirm the first material realization of Lieb lattice in COFs, but also offer a possible way to achieve tunable topology and magnetism in organic lattices. Although artificial Lieb lattices have been recently synthesized, the realization of a Lieb lattice in a real material is still challenging. Here the authors use tight-binding and first principle calculations to predict tunable topology and magnetism in recently discovered two-dimensional covalent-organic frameworks.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13794-y