Study on a Class of Piecewise Nonlinear Systems with Fractional Delay

In this paper, a dynamic model of piecewise nonlinear system with fractional-order time delay is simplified. The amplitude frequency response equation of the dynamic model of piecewise nonlinear system with fractional-order time delay under periodic excitation is obtained by using the average method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2021, Vol.2021 (1)
Hauptverfasser: Wang, Meiqi, Ma, Wenli, Chen, Enli, Chang, Yujian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a dynamic model of piecewise nonlinear system with fractional-order time delay is simplified. The amplitude frequency response equation of the dynamic model of piecewise nonlinear system with fractional-order time delay under periodic excitation is obtained by using the average method. It is found that the amplitude of the system changes when the external excitation frequency changes. At the same time, the amplitude frequency response characteristics of the system under different time delay parameters, different fractional-order parameters, and coefficient are studied. By analyzing the amplitude frequency response characteristics, the influence of time delay and fractional-order parameters on the stability of the system is analyzed in this paper, and the bifurcation equations of the system are studied by using the theory of continuity. The transition sets under different piecewise states and the constrained bifurcation behaviors under the corresponding unfolding parameters are obtained. The variation of the bifurcation topology of the system with the change of system parameters is given.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/3411390