Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification

Gold-based co-catalysts are a promising class of materials with potential applications in photocatalytic H 2 O 2 production. However, current approaches with Au co-catalysts show limited H 2 O 2 production due to intrinsically weak O 2 adsorption at the Au site. We report an approach to strengthen O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3212-3212, Article 3212
Hauptverfasser: Zhang, Xidong, Gao, Duoduo, Zhu, Bicheng, Cheng, Bei, Yu, Jiaguo, Yu, Huogen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gold-based co-catalysts are a promising class of materials with potential applications in photocatalytic H 2 O 2 production. However, current approaches with Au co-catalysts show limited H 2 O 2 production due to intrinsically weak O 2 adsorption at the Au site. We report an approach to strengthen O 2 adsorption at Au sites, and to improve H 2 O 2 production, through the formation of electron-deficient Au δ+ sites by modifying the electronic structure. In this case, we report the synthesis of TiO 2 /MoS x -Au, following selective deposition of Au onto a MoS x surface which is then further anchored onto TiO 2 . We further show that the catalyst achieves a significantly increased H 2 O 2 production rate of 30.44 mmol g −1  h −1 in O 2 -saturated solution containing ethanol. Density functional theory calculations and X-ray photoelectron spectroscopy analysis reveal that the MoS x mediator induces the formation of electron-deficient Au δ+ sites thereby decreasing the antibonding-orbital occupancy of Au-O ads and subsequently enhancing O 2 adsorption. This strategy may be useful for rationally designing the electronic structure of catalyst surfaces to facilitate artificial photosynthesis. Photocatalytic H 2 O 2 production using Au is hindered by its inherently weak O 2 adsorption. Herein, the authors modify the electronic structure of Au with MoS x to form electron deficient Au sites to promote O 2 adsorption and H 2 O 2 production.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47624-7