Genomic selection for crossbred performance accounting for breed-specific effects
Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of cross...
Gespeichert in:
Veröffentlicht in: | Genetics selection evolution (Paris) 2017-06, Vol.49 (1), p.51-51, Article 51 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs.
The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively).
In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred performance should be included to further assess the value of the BS model in genomic predictions. |
---|---|
ISSN: | 1297-9686 0999-193X 1297-9686 |
DOI: | 10.1186/s12711-017-0328-z |