A generic method to control hysteresis and memory effect in Van der Waals hybrids
The diverse properties of two-dimensional materials have been utilized in a variety of architecture to fabricate high quality electronic circuit elements. Here we demonstrate a generic method to control hysteresis and stable memory effect in Van der Waals hybrids with a floating gate as the base lay...
Gespeichert in:
Veröffentlicht in: | Materials research express 2020-01, Vol.7 (1), p.14004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The diverse properties of two-dimensional materials have been utilized in a variety of architecture to fabricate high quality electronic circuit elements. Here we demonstrate a generic method to control hysteresis and stable memory effect in Van der Waals hybrids with a floating gate as the base layer. The floating gate can be charged with a global back gate-voltage, which it can retain in a stable manner. Such devices can provide a very high, leakage-free effective gate-voltage on the field-effect transistors due to effective capacitance amplification, which also leads to reduced input power requirements on electronic devices. The capacitance amplification factor of ∼10 can be further enhanced by increasing the area of the floating gate. We have exploited this method to achieve highly durable memory action multiple genre of ultra-thin 2D channels, including graphene, MoS2, and topological insulators at room temperature. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/ab6923 |