Moiré metrology of energy landscapes in van der Waals heterostructures

The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-01, Vol.12 (1), p.242-242, Article 242
Hauptverfasser: Halbertal, Dorri, Finney, Nathan R., Sunku, Sai S., Kerelsky, Alexander, Rubio-Verdú, Carmen, Shabani, Sara, Xian, Lede, Carr, Stephen, Chen, Shaowen, Zhang, Charles, Wang, Lei, Gonzalez-Acevedo, Derick, McLeod, Alexander S., Rhodes, Daniel, Watanabe, Kenji, Taniguchi, Takashi, Kaxiras, Efthimios, Dean, Cory R., Hone, James C., Pasupathy, Abhay N., Kennes, Dante M., Rubio, Angel, Basov, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe 2 /WSe 2 . Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers. Here, a combined experiment-theory framework based on different nano-imaging techniques and first-principle calculations is used to analyse the shapes of moiré patterns in twisted van der Waals structures, enabling an accurate description of the coupling between the atomically thin layers.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20428-1