Simulation of laser-induced tunnel ionization based on a curved waveguide

The problem of tunneling ionization and the associated questions of how long it takes for an electron to tunnel through the barrier, and what the tunneling rate has fascinated scientists for almost a century. In strong field physics, tunnel ionization plays an important role, and accurate knowledge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-08, Vol.13 (1), p.12612-12612, Article 12612
Hauptverfasser: Ben Levy, Arnon, Hen, Amir, Kahn, Merav, Aharon, Yoad, Levin, Tamar, Mazurski, Noa, Levy, Uriel, Marcus, Gilad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of tunneling ionization and the associated questions of how long it takes for an electron to tunnel through the barrier, and what the tunneling rate has fascinated scientists for almost a century. In strong field physics, tunnel ionization plays an important role, and accurate knowledge of the time-dependent tunnel rate is of paramount importance. The Keldysh theory and other more advanced related theories are often used, but their accuracy is still controversial. In previous work, we suggested using a curved waveguide as a quantum simulator to simulate the tunnel ionization process. Here we implemented for the first time such a curved waveguide and observed the simulated tunneling ionization process. We compare our results with the theory.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-39142-1