A Model-Based Predictive Controller of the Level of Steel in the Mold with Disturbances Using a Repetitive Structure

Keeping the level of steel in the mold of the continuous casting process constant is fundamental for the quality of the steel produced and, consequently, its commercial value. It is challenging, considering the several disturbances that cause undesired variations in the mold level. The aim of this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-09, Vol.11 (9), p.1458
Hauptverfasser: Pereira, Rogério P. do A., Almeida, Gustavo M. de, Salles, José L. Felix, Cuadros, Marco A. de S. L., Valadão, Carlos T., Freitas, Ricardo O. de, Bastos-Filho, Teodiano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keeping the level of steel in the mold of the continuous casting process constant is fundamental for the quality of the steel produced and, consequently, its commercial value. It is challenging, considering the several disturbances that cause undesired variations in the mold level. The aim of this paper is to apply a repetitive structure composed of two controllers, a generalized predictive controller (GPC) and a repetitive GPC (R-GPC) with constraints to mitigate the bulging and clogging/unclogging disturbances and the casting speed variation in the mold level of the process. The R-GPC controller has the same characteristics as the GPC, such as performance, robustness to disturbances, and insertion of constraints, and its advantage is the elimination of periodic disturbances. The repetitive structure will be implemented with a robustness filter and tuned by a genetic algorithm (GA). The controller tests are performed by simulations of a nonlinear mathematical model of the mold level, validated using real data from the steel industry. The proposed controller reduces the bulging disturbance amplitude by 98.5% and at 25% of the frequency of reversions in the valve. Consequently, the proposed controller allows an increase in the valve life span, a reduction in maintenance costs, and quality improvement in the steel slab.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11091458