Asymptotic behavior and uniqueness of boundary blow-up solutions to elliptic equations

In this paper, under some structural assumptions of weight function $b(x)$ and nonlinear term $f(u)$, we establish the asymptotic behavior and uniqueness of boundary blow-up solutions to semilinear elliptic equations \begin{equation*} \begin{cases} \Delta u=b(x)f(u), &x\in \Omega,\\ u(x)=\infty,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2014-01, Vol.2014 (73), p.1-10
Hauptverfasser: Tian, Qiaoyu, Xu, Yonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, under some structural assumptions of weight function $b(x)$ and nonlinear term $f(u)$, we establish the asymptotic behavior and uniqueness of boundary blow-up solutions to semilinear elliptic equations \begin{equation*} \begin{cases} \Delta u=b(x)f(u), &x\in \Omega,\\ u(x)=\infty, &x\in\partial\Omega, \end{cases} \end{equation*} where $\Omega\subset\mathbb{R}^N$ is a bounded smooth domain. Our analysis is based on the Karamata regular variation theory and López-Gómez localization method.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2014.1.73