A new power-law model for μ –Λ relationships in convective and stratiform rainfall
In this study, we take a closer look at the important issue of μ–Λ relationships in raindrop size distributions (DSDs) by conducting a systematic analysis of 20 months of data collected by disdrometers in the Netherlands. A new power-law model for representing μ–Λ relationships based on the double n...
Gespeichert in:
Veröffentlicht in: | Atmospheric measurement techniques 2024-01, Vol.17 (1), p.235-245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we take a closer look at the important issue of μ–Λ relationships in raindrop size distributions (DSDs) by conducting a systematic analysis of 20 months of data collected by disdrometers in the Netherlands. A new power-law model for representing μ–Λ relationships based on the double normalization framework is proposed and used to derive separate μ–Λ relationships for stratiform and convective rain events. The sensitivity of the obtained relationships to measurement uncertainty is studied by applying two different quality control filters based on the mass-weighted mean drop diameter (Dm) and liquid water content (LWC). Our results show that there are significant differences in μ–Λ relationships between convective and stratiform rainfall types. However, the retrieved relationships appear to be quite robust to measurement noise and there is good agreement with other reference relations for similar climatological conditions. |
---|---|
ISSN: | 1867-8548 1867-1381 1867-8548 |
DOI: | 10.5194/amt-17-235-2024 |