Enhancing the Performance of the Photonic Integrated Sensing System by Applying Frequency Interrogation

Lab-on-a-chip systems are currently one of the most promising areas in the development of ultra-compact sensor systems, used primarily for gas and liquid analysis to determine the concentration of impurities. Integrated photonics is an ideal basis for designing "lab-on-a-chip" systems, adv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.193
Hauptverfasser: Voronkov, Grigory S, Aleksakina, Yana V, Ivanov, Vladislav V, Zakoyan, Aida G, Stepanov, Ivan V, Grakhova, Elizaveta P, Butt, Muhammad A, Kutluyarov, Ruslan V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lab-on-a-chip systems are currently one of the most promising areas in the development of ultra-compact sensor systems, used primarily for gas and liquid analysis to determine the concentration of impurities. Integrated photonics is an ideal basis for designing "lab-on-a-chip" systems, advantageous for its compactness, energy efficiency, and low cost in mass production. This paper presents a solution for "lab-on-a-chip" device realization, consisting of a sensor and an interrogator based on a silicon-on-insulator (SOI) integrated photonics platform. The sensor function is performed by an all-pass microring resonator (MRR), installed as a notch filter in the feedback circuit of an optoelectronic oscillator based on an electro-optic phase modulator. This structure realizes the frequency interrogation of the sensor with high accuracy and speed using a conventional single-mode laser source. The system sensitivity for the considered gases is 13,000 GHz/RIU. The results show that the use of frequency interrogation makes it possible to increase the intrinsic by five orders. The proposed solution opens an opportunity for fully integrated implementation of a photonic "laboratory-on-a-chip" unit.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13010193