Simulation of biogas co-combustion in CFB boiler: Combustion analysis using the CPFD method
CFB boilers exhibit broad fuel adaptability. Multi-fuel co-combustion can be implemented without altering the boiler's main structure, enabling the exploration of additional fuel utilization methods. This study assesses the feasibility of biogas co-combustion in CFB boilers. In this study, the...
Gespeichert in:
Veröffentlicht in: | Case studies in thermal engineering 2024-07, Vol.59, p.104610, Article 104610 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CFB boilers exhibit broad fuel adaptability. Multi-fuel co-combustion can be implemented without altering the boiler's main structure, enabling the exploration of additional fuel utilization methods. This study assesses the feasibility of biogas co-combustion in CFB boilers. In this study, the computational particle fluid dynamics (CPFD) method was used to simulate a 130 t/h biomass CFB boiler. The impact of varying proportions of biogas on combustion characteristics and NO emissions in the CFB boiler was systematically analyzed. The results indicate that the fluid velocity in the furnace remains relatively unaffected before and after co-combustion, the flow rate varied from 3 to 5 m/s for all cases. With an increase in the proportion of biogas co-combustion, the temperature inside the furnace rises. However, maintaining the biogas co-combustion ratio below 20 % keeps the temperature within a reasonable range. Beyond this threshold, particularly at a 30 % biogas co-combustion ratio, localized time-averaged temperatures in the furnace exceed 1300K, and the coking risk increases. Additionally, co-combusting biogas decreases fuel nitrogen levels and alters oxygen distribution, thereby impeding NOx formation. This results in a 14.3 % reduction in NO emissions at a 20 % co-combustion ratio and a 24.6 % reduction at a 30 % co-combustion ratio. This paper's research provides a valuable reference for co-combustion of gases in CFB boilers.
[Display omitted]
•The feasibility of co-combustion of biogas in biomass CFB was discussed.•Biogas co-combustion has no significant effect on the flow rate in the furnace.•Furnace temperature stays in normal range below 20 % biogas co-combustion ratio.•Biogas co-combustion contribute to suppress the boiler NO emissions. |
---|---|
ISSN: | 2214-157X 2214-157X |
DOI: | 10.1016/j.csite.2024.104610 |