Random Environment Integer-Valued Autoregressive Process with Discrete Laplace Marginal Distributions

* A new random environment integer-valued autoregressive process of order 1 with discrete Laplace marginal distributions and with r states (abbrev. [RrDLINAR.sub.1](M, A)) is introduced. It is shown that this process is distributed as a difference of two independent generalized random environment in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revstat 2023-11, Vol.21 (4), p.469
Hauptverfasser: Pirkovic, Bogdan A, Ristic, Miroslav M, Nastic, Aleksandar S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:* A new random environment integer-valued autoregressive process of order 1 with discrete Laplace marginal distributions and with r states (abbrev. [RrDLINAR.sub.1](M, A)) is introduced. It is shown that this process is distributed as a difference of two independent generalized random environment integer-valued autoregressive processes, when their orders are equal to 1. Other distributional and correlation properties of the [RrDLINAR.sub.1](M, A) process are discussed. Strongly consistent Yule-Walker estimates are defined. The method of moments is implemented for different cases of simulated samples. Finally, the proposed model is applied to real-life data and the obtained results show its effectiveness. Keywords: * random environment; INAR(1), [rDLINAR.sub.1](M, A); DLINAR(1); discrete Laplace distribution. AMS Subject Classification: * 62M10.
ISSN:1645-6726
2183-0371
DOI:10.57805/revstat.v21i4.430