Tribology Performance of Polyol-Ester Based TiO2, SiO2, and Their Hybrid Nanolubricants
The tribology properties of TiO2/POE, SiO2/POE and TiO2-SiO2/POE nanolubricants were investigated for an automotive air-conditioning system with an electrically-driven compressor (EDC). A two-step preparation method was used in dispersing TiO2 and SiO2 nanoparticles into Polyol-ester (POE)-based lub...
Gespeichert in:
Veröffentlicht in: | Lubricants 2023-01, Vol.11 (1), p.18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tribology properties of TiO2/POE, SiO2/POE and TiO2-SiO2/POE nanolubricants were investigated for an automotive air-conditioning system with an electrically-driven compressor (EDC). A two-step preparation method was used in dispersing TiO2 and SiO2 nanoparticles into Polyol-ester (POE)-based lubricant at different volume concentrations of 0.01 to 0.1%. The coefficient of friction (COF) and wear scar diameter (WSD) were investigated using a Koehler four-ball tribo tester and microscopes. For the TiO2/POE, SiO2/POE and TiO2-SiO2/POE nanolubricants, respectively, the lowest COFs with maximum reduction were attained at 37.5%, 33.5% and 31.6% each at volume concentrations of 0.05%, 0.01% and 0.03%. The highest WSD reduction for the TiO2/POE and SiO2/POE mono nanolubricants were attained at 12.5% and 26.4%, respectively, at the same volume concentration of 0.01%. Meanwhile, the maximum reduction of WSD for the TiO2-SiO2/POE hybrid nanolubricant was reached at 12.4% at 0.03% volume concentration. As a conclusion, mono and hybrid nanolubricants with volume concentrations of less than 0.05% are suggested for use in air-conditioning systems with EDC because of their outstanding tribology performances. Further performance investigation of nanolubricants in the air-conditioning system is required to extend the present work. |
---|---|
ISSN: | 2075-4442 2075-4442 |
DOI: | 10.3390/lubricants11010018 |