The Influence of Green Space Patterns on Land Surface Temperature in Different Seasons: A Case Study of Fuzhou City, China
Background: Urban green space (UGS) has been shown to play an important role in mitigating urban heat island (UHI) effects. In the context of accelerating urbanization, a better understanding of the landscape pattern mechanisms affecting the thermal environment is important for the improvement of th...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-12, Vol.13 (24), p.5114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Urban green space (UGS) has been shown to play an important role in mitigating urban heat island (UHI) effects. In the context of accelerating urbanization, a better understanding of the landscape pattern mechanisms affecting the thermal environment is important for the improvement of the urban ecological environment. Methods: In this study, the relationship between land surface temperature (LST) and the spatial patterns of green space was analyzed using a bivariate spatial autocorrelation and spatial autoregression model in three seasons (summer, transition season (spring), and winter) with different grid scales in Fuzhou city. Results: Our results indicated that the LST in Fuzhou City has a significant spatial autocorrelation. The percentage of landscape and patch density area were negatively correlated with surface temperature. The results of our indicators differed according to the season, with population density and distance to the water indicators not being significant in the winter. The coefficient of determination was higher at the 510 m grid scale on this study’s scale. Conclusion: This study extends our understanding on the influence of UHI effects after accounting for different seasonal and spatial scale factors. It also provides a reference for urban planners to mitigate heat islands in the future. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13245114 |