Real-Time Short-Term Pedestrian Trajectory Prediction Based on Gait Biomechanics

The short-term prediction of a person’s trajectory during normal walking becomes necessary in many environments shared by humans and robots. Physics-based approaches based on Newton’s laws of motion seem best suited for short-term predictions, but the intrinsic properties of human walking conflict w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-08, Vol.22 (15), p.5828
Hauptverfasser: González, Leticia, López, Antonio M., Álvarez, Juan C., Álvarez, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The short-term prediction of a person’s trajectory during normal walking becomes necessary in many environments shared by humans and robots. Physics-based approaches based on Newton’s laws of motion seem best suited for short-term predictions, but the intrinsic properties of human walking conflict with the foundations of the basic kinematical models compromising their performance. In this paper, we propose a short-time prediction method based on gait biomechanics for real-time applications. This method relays on a single biomechanical variable, and it has a low computational burden, turning it into a feasible solution to implement in low-cost portable devices. We evaluate its performance from an experimental benchmark where several subjects walked steadily over straight and curved paths. With this approach, the results indicate a performance good enough to be applicable to a wide range of human–robot interaction applications.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22155828