Voltage Stability Control Based on Angular Indexes from Stationary Analysis
This paper presents a novel methodology for the calculation of angular indexes of an electrical system from stationary analysis, using load flow and nose curves (P–V) in each of the buses of the system to perform control actions and preserve or improve voltage stability. The control actions are prop...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-10, Vol.15 (19), p.7255 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel methodology for the calculation of angular indexes of an electrical system from stationary analysis, using load flow and nose curves (P–V) in each of the buses of the system to perform control actions and preserve or improve voltage stability. The control actions are proposed considering a novel method based on the concepts of the cutset angle (CA) and center of angle (COA). The target is a fast estimation of voltage-stability margins through an appropriate angular characterization of the whole system and for each load bus with a complete network and N-1 contingency criteria. The most significant enhancement is that the angular characterization is based on the COA, which is related to the angular dynamics of the system, and indirectly reflects the inertia and the respective angles of the generator rotor, as well as the impact on the angular equivalent-system model. Simulations showed that the COA is an important index to determine the location of occurrence of the events. The COA can also help aim where control actions, like the amount of load shedding, should be carried out to remedy the voltage problems. The proposed method is assessed and tested in the benchmark IEEE 39-bus system. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15197255 |