CONFOLD2: improved contact-driven ab initio protein structure modeling

Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2018-01, Vol.19 (1), p.22-22, Article 22
Hauptverfasser: Adhikari, Badri, Cheng, Jianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-018-2032-6