The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely under...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-04, Vol.8 (1), p.14911-14911, Article 14911 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and
TP53
is one direct ZBTB11 transcriptional target.
TP53
repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs.
Neutrophils are increased in response to injury and infection but how they form from a common granulocyte-macrophage progenitor is unclear. Here, the authors identify a role for the transcriptional repressor ZBTB11 in zebrafish, which is regulated by master myeloid regulators and represses
TP53
. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms14911 |