Investigation of Rheological Properties of Blended Cement Pastes Using Rotational Viscometer and Dynamic Shear Rheometer

To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2018-01, Vol.2018 (2018), p.1-6
Hauptverfasser: Hu, Jiong, Lee, Soon-Jae, Cho, Bum-Yean, Kim, Yoo-Jae, Wilde, James W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To successfully process concrete, it is necessary to predict and control its flow behavior. However, the workability of concrete is not completely measured or specified by current standard tests. Furthermore, it is only with a clear picture of cement hydration and setting that full prediction and control of concrete performance can be generalized. In order to investigate the rheological properties of blended cement pastes, a rotational viscometer (RV) was used to determine the flow characteristics of ordinary and blended pastes to provide assurance that it can be pumped and handled. Additionally, a dynamic shear rheometer (DSR) was used to characterize both the viscous and elastic components of pastes. Ordinary Portland cement paste and blended pastes (slag, fly ash, and silica fume) were investigated in this study. The stress and strain of the blended specimens were measured by the DSR, which characterizes both viscous and elastic behaviors by measuring the complex shear modulus (the ratio of total shear stress to total shear strain) and phase angle (an indicator of the relative amounts of recoverable and nonrecoverable deformation) of materials. Cement pastes generally exhibit different rheological behaviors with respect to age, mineral admixture type, and cement replacement level.
ISSN:1687-8434
1687-8442
DOI:10.1155/2018/6303681