Orange peel magnetic activated carbon for removal of acid orange 7 dye from water
Magnetic activated carbon resources with a remarkably high specific surface area have been successfully synthesized using orange peels as the precursor and ZnCl 2 as the activating agent. The impregnation ratio was set at 0.5, while the pyrolysis temperature spanned from 700 to 900 °C. This comprehe...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-01, Vol.14 (1), p.119-119, Article 119 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic activated carbon resources with a remarkably high specific surface area have been successfully synthesized using orange peels as the precursor and ZnCl
2
as the activating agent. The impregnation ratio was set at 0.5, while the pyrolysis temperature spanned from 700 to 900 °C. This comprehensive study delved into the influence of activation temperatures on the resultant pore morphology and specific surface area. Optimal conditions were discerned, leading to a magnetic activated carbon material exhibiting an impressive specific surface area at 700 °C. The Brunauer–Emmett–Teller surface area reached 155.09 m
2
/g, accompanied by a total pore volume of 0.1768 cm
3
/g, and a mean pore diameter of 4.5604 nm. The material displayed noteworthy properties, with saturation magnetization (Ms) reaching 17.28 emu/g, remanence (Mr) at 0.29 emu/g, and coercivity (Hc) of 13.71 G. Additionally, the composite demonstrated super-paramagnetic behaviour at room temperature, facilitating its rapid collection within 5 s through an external magnetic field. Factors such as absorbent dose, initial concentration of the adsorbate, contact time, and pH were systematically examined. The adsorption behaviour for acid orange 7 (AO7) was found to adhere to the Temkin isotherm models (
R
2
= 0.997). The Langmuir isotherm model suggested a monolayer adsorption, and the calculated maximum monolayer capacity (
Q
m
) was 357.14 mg/g, derived from the linear solvation of the Langmuir model using 0.75 g/L as an adsorbent dose and 150–500 mg/L as AO7 dye concentrations. The pseudo-second order model proved to be the best fit for the experimental data of AO7 dye adsorption, with a high coefficient of determination (
R
2
) ranging from 0.999 to 1.000, outperforming other kinetic models. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-50273-3 |