Observation of dense collisional soliton complexes in a two-component Bose-Einstein condensate
Solitons are nonlinear solitary waves which maintain their shape over time and through collisions, occurring in a variety of nonlinear media from plasmas to optics. We present an experimental and theoretical study of hydrodynamic phenomena in a two-component atomic Bose-Einstein condensate where a s...
Gespeichert in:
Veröffentlicht in: | Communications physics 2024-05, Vol.7 (1), p.163-5, Article 163 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solitons are nonlinear solitary waves which maintain their shape over time and through collisions, occurring in a variety of nonlinear media from plasmas to optics. We present an experimental and theoretical study of hydrodynamic phenomena in a two-component atomic Bose-Einstein condensate where a soliton array emerges from the imprinting of a periodic spin pattern by a microwave pulse-based winding technique. We observe the ensuing dynamics which include shape deformations, the emergence of dark-antidark solitons, apparent spatial frequency tripling, and decay and revival of contrast related to soliton collisions. For the densest arrays, we obtain soliton complexes where solitons undergo continued collisions for long evolution times providing an avenue towards the investigation of soliton gases in atomic condensates.
Solitons are nonlinear, stable and coherent solitary wave structures that have been investigated in a variety of systems from optics to plasma physics. The authors experimentally and theoretically investigate the dynamics of soliton arrays in a two-component Bose-Einstein condensate. |
---|---|
ISSN: | 2399-3650 2399-3650 |
DOI: | 10.1038/s42005-024-01659-w |