Flow Map for Hydrodynamics and Suspension Behavior in a Continuous Archimedes Tube Crystallizer

The Archimedes Tube Crystallizer (ATC) is a small-scale coiled tubular crystallizer operated with air-segmented flow. As individual liquid segments are moved through the apparatus by rotation, the ATC operates as a pump. Thus, the ATC overcomes pressure drop limitations of other continuous crystalli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2021-12, Vol.11 (12), p.1466
Hauptverfasser: Sonnenschein, Jana, Friedrich, Pascal, Aghayarzadeh, Moloud, Mierka, Otto, Turek, Stefan, Wohlgemuth, Kerstin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Archimedes Tube Crystallizer (ATC) is a small-scale coiled tubular crystallizer operated with air-segmented flow. As individual liquid segments are moved through the apparatus by rotation, the ATC operates as a pump. Thus, the ATC overcomes pressure drop limitations of other continuous crystallizers, allowing for longer residence times and crystal growth phases. Understanding continuous crystallizer phenomena is the basis for a well-designed crystallization process, especially for small-scale applications in the pharmaceutical and fine chemical industry. Hydrodynamics and suspension behavior, for example, affect agglomeration, breakage, attrition, and ultimately crystallizer blockage. In practice, however, it is time-consuming to investigate these phenomena experimentally for each new material system. In this contribution, a flow map is developed in five steps through a combination of experiments, CFD simulations, and dimensionless numbers. Accordingly, operating parameters can be specified depending on ATC design and material system used, where suspension behavior is suitable for high-quality crystalline products.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst11121466