Towards Piston Fine Tuning of Segmented Mirrors through Reinforcement Learning

Featured Application Piston alignment of segmented optical mirror telescopes through an algorithm that learns by itself how to maximize a physical quantity of the system. Abstract Unlike supervised machine learning methods, reinforcement learning allows an entity to learn how to deploy a task from e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-05, Vol.10 (9), p.3207, Article 3207
Hauptverfasser: Guerra-Ramos, Dailos, Trujillo-Sevilla, Juan, Manuel Rodriguez-Ramos, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Featured Application Piston alignment of segmented optical mirror telescopes through an algorithm that learns by itself how to maximize a physical quantity of the system. Abstract Unlike supervised machine learning methods, reinforcement learning allows an entity to learn how to deploy a task from experience rather than labeled data. This approach has been used in this paper to correct piston misalignment between segments in a segmented mirror telescope. It was proven in simulations that the algorithm converges to a point where it learns how to move the piston actuators in order to maximize the Strehl ratio of the wavefront at the intersection.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10093207