Multi-Modal Convolutional Parameterisation Network for Guided Image Inverse Problems
There are several image inverse tasks, such as inpainting or super-resolution, which can be solved using deep internal learning, a paradigm that involves employing deep neural networks to find a solution by learning from the sample itself rather than a dataset. For example, Deep Image Prior is a tec...
Gespeichert in:
Veröffentlicht in: | Journal of imaging 2024-03, Vol.10 (3), p.69 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are several image inverse tasks, such as inpainting or super-resolution, which can be solved using deep internal learning, a paradigm that involves employing deep neural networks to find a solution by learning from the sample itself rather than a dataset. For example, Deep Image Prior is a technique based on fitting a convolutional neural network to output the known parts of the image (such as non-inpainted regions or a low-resolution version of the image). However, this approach is not well adjusted for samples composed of multiple modalities. In some domains, such as satellite image processing, accommodating multi-modal representations could be beneficial or even essential. In this work, Multi-Modal Convolutional Parameterisation Network (MCPN) is proposed, where a convolutional neural network approximates shared information between multiple modes by combining a core shared network with modality-specific head networks. The results demonstrate that these approaches can significantly outperform the single-mode adoption of a convolutional parameterisation network on guided image inverse problems of inpainting and super-resolution. |
---|---|
ISSN: | 2313-433X 2313-433X |
DOI: | 10.3390/jimaging10030069 |