Historical Radial Growth of Chinese Torreya Trees and Adaptation to Climate Change
Chinese Torreya is a vital crop tree with an average life span of a thousand years in subtropical China. Plantations of this tree are broadly under construction, to benefit the local economy. Information on the growth and adaptation to climate change for this species is limited, but tree rings might...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2020-07, Vol.11 (7), p.691 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chinese Torreya is a vital crop tree with an average life span of a thousand years in subtropical China. Plantations of this tree are broadly under construction, to benefit the local economy. Information on the growth and adaptation to climate change for this species is limited, but tree rings might show responses to historical climate dynamics. In this study, six stem sections from Chinese Torreya trees between 60 and 90 years old were acquired and analyzed with local climate data. The results indicated that the accumulated radial growth increased linearly with time, even at the age of 90 years, and the average radial increment of each tree ranged from 1.9 to 5.1 mm/year. The variances of basal area increment (BAI) increased with time, and correlated with the variances of precipitation in the growing seasons. Taylor’s power law was present in the radial growth, with the scaling exponents concentrated within 1.9–2.1. A “Triangle”-shaped relationship was found between the precipitation in the growing seasons and annual radial increments. Similar patterns also appeared for the standard precipitation index, maximum monthly air temperature and minimum monthly air temperature. The annual increases were highly correlated with the local climate. Slow growth, resilience to drought and multiple stems in one tree might help the tree species adapt to different climate conditions, with the implications for plantation management discussed in this paper. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos11070691 |