Generation of highly realistic microstructural images of alloys from limited data with a style-based generative adversarial network
In materials science, the amount of observational data is often limited by operating protocols that require a high level of expertise, often machine-dependent, developed for a time-consuming integration of valuable data. Scanning electron microscopy (SEM) is one of those methodologies of characteris...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-01, Vol.13 (1), p.566-566, Article 566 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In materials science, the amount of observational data is often limited by operating protocols that require a high level of expertise, often machine-dependent, developed for a time-consuming integration of valuable data. Scanning electron microscopy (SEM) is one of those methodologies of characterisation for which the number of observations of a given material is limited to just a few images. In the present study, we present the possibility to artificially inflate the size of SEM image datasets from a limited (
∼
100
s
-
1000
s
of images) to a virtually unbounded number thanks to a generative adversarial network (GAN). For this purpose, we use one of the latest developments in GAN architectures and training methodologies, the StyleGAN2 with adaptive discriminator augmentation (ADA), to generate a diversity of high-quality SEM images of
512
×
512
pixels. Overall, coarse and fine microstructural details are successfully reproduced when training a StyleGAN2 with ADA from scratch on at most 3000 SEM images, and interpolations between microstructures are performed without significant modifications to the training protocol when applied to natural images. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-27574-8 |