Quantitative Analysis of Real-Time Infrared Thermography for the Assessment of Lumbar Sympathetic Blocks: A Preliminary Study

Lumbar sympathetic blocks (LSBs) are commonly performed to treat pain ailments in the lower limbs. LSBs involve injecting local anesthetic around the nerves. The injection is guided by fluoroscopy which is sometimes considered to be insufficiently accurate. The main aim was to analyze the plantar fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (11), p.3573
Hauptverfasser: Cañada-Soriano, Mar, Priego-Quesada, José Ignacio, Bovaira, Maite, García-Vitoria, Carles, Salvador Palmer, Rosario, Cibrián Ortiz de Anda, Rosa, Moratal, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lumbar sympathetic blocks (LSBs) are commonly performed to treat pain ailments in the lower limbs. LSBs involve injecting local anesthetic around the nerves. The injection is guided by fluoroscopy which is sometimes considered to be insufficiently accurate. The main aim was to analyze the plantar foot skin temperature data acquired while performing LSBs in patients with complex regional pain syndrome (CRPS) affecting the lower limbs. Forty-four LSBs for treating lower limb CRPS in 13 patients were assessed. Pain medicine physicians visualized the infrared thermography (IRT) video in real time and classified the performance depending on the observed thermal changes within the first 4 min. Thirty-two percent of the cases did not register temperature variations after lidocaine was injected, requiring the needle to be relocated. Differences between moments are indicated using the 95% confidence intervals of the differences (CI 95%), the Cohen effect size (ES) and the significance (p value). In successful cases, after injecting lidocaine, increases at minute 7 for the mean (CI 95% (1.4, 2.1 °C), p < 0.001 and ES = 0.5), at minute 5 for maximum temperature (CI 95% (2.3, 3.3 °C), p < 0.001 and ES = 0.6) and at minute 6 for SD (CI 95% (0.2, 0.3 °C), p < 0.001 and ES = 0.5) were observed. The results of our preliminary study showed that the measurement of skin temperature in real time by infrared thermography is valuable for assessing the success of lumbar sympathetic blocks.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113573