Rice production threatened by coupled stresses of climate and soil arsenic

Projections of global rice yields account for climate change. They do not, however, consider the coupled stresses of impending climate change and arsenic in paddy soils. Here, we show in a greenhouse study that future conditions cause a greater proportion of pore-water arsenite, the more toxic form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-11, Vol.10 (1), p.4985-10, Article 4985
Hauptverfasser: Muehe, E. Marie, Wang, Tianmei, Kerl, Carolin F., Planer-Friedrich, Britta, Fendorf, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Projections of global rice yields account for climate change. They do not, however, consider the coupled stresses of impending climate change and arsenic in paddy soils. Here, we show in a greenhouse study that future conditions cause a greater proportion of pore-water arsenite, the more toxic form of arsenic, in the rhizosphere of Californian Oryza sativa L. variety M206, grown on Californian paddy soil. As a result, grain yields decrease by 39% compared to yields at today’s arsenic soil concentrations. In addition, future climatic conditions cause a nearly twofold increase of grain inorganic arsenic concentrations. Our findings indicate that climate-induced changes in soil arsenic behaviour and plant response will lead to currently unforeseen losses in rice grain productivity and quality. Pursuing rice varieties and crop management practices that alleviate the coupled stresses of soil arsenic and change in climatic factors are needed to overcome the currently impending food crisis. Current projections on rice production do not consider the coupled stresses of impending climate change and the toxin arsenic in paddy soils. Here, the authors examined potential compounding impacts of soil arsenic and a changing climate on rice production and show that climate-induced changes in soil arsenic behaviour and plant response will lead to currently unforeseen losses in paddy rice grain productivity and quality.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12946-4