Three-Step Resonance Energy Transfer in Insulin Amyloid Fibrils

The applicability of the three-step Förster resonance energy transfer (FRET) to detection of insulin amyloid fibrils was evaluated, using the chromophore system, containing Thioflavin T (ThT), 4-dimethylaminochalcone (DMC), and two squaraine dyes, referred to here as SQ1 and SQ4. The mediator chromo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:East European journal of physics 2019-01 (4), p.58-69
Hauptverfasser: Uliana Tarabara, Mykhailo Shchuka, Kateryna Vus, Olga Zhytniakivska, Valeriya Trusova, Galyna Gorbenko, Nikolai Gadjev, Todor Deligeorgiev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The applicability of the three-step Förster resonance energy transfer (FRET) to detection of insulin amyloid fibrils was evaluated, using the chromophore system, containing Thioflavin T (ThT), 4-dimethylaminochalcone (DMC), and two squaraine dyes, referred to here as SQ1 and SQ4. The mediator chromophore DMC was found to enhance the fluorescence intensity of the terminal acceptor, SQ1, excited at 440 nm (at the absorption maximum of the principal donor, ThT), in fibrillar insulin compared to the system without DMC, providing the evidence for the cascade energy transfer in the chain ThT→DMC→SQ4→SQ1. Furthermore, the resulting Stokes shift in the four-chromophore system was 240 nm, as compared to 45 nm for the fibril-bound ThT, suggesting that higher signal-to-noise ratio is the advantage of amyloid fibril detection by multistep FRET. The maximum efficiencies of energy transfer in the insulin fibrils estimated from the quenching of the donor fluorescence in the presence of acceptor for the donor-acceptor pairs ThT-DMC, DMC-SQ4 and SQ4-SQ1 were 40%, 60% and 30% respectively, while negligible FRET occurred in the non-fibrillized protein. The most pronounced differences between fibrillar and non-fibrillized insulin were observed in the 3D fluorescence spectra. Specifically, two intensive spots centered at the emission wavelengths ~ 650 nm (SQ4) and ~ 685 nm (SQ1) were revealed at the excitation wavelength ~ 440 nm in the 3D patterns of insulin amyloid aggregates. In contrast, in the case of the non-fibrillized protein, the barely noticeable spots centered at the same wavelengths, as well as higher fluorescence intensities at the excitation above 550 nm were observed, suggesting the predominant impact of the direct excitation of SQ1 and SQ4 on their fluorescence responses. The inter-chromophore distances calculated from the experimental values of the energy transfer efficiency assuming the isotropic rotation of the dyes, were found to be 2.4, 4.5 and 4.3 nm for the ThT-DMC, DMC-SQ4 and SQ4-SQ1 pairs, respectively, revealing the different fibril binding sites for the examined dyes. The quantum-chemical calculations and simple docking studies provided evidence for the SQ1, SQ4 and ThT, DMC binding to the wet and dry interface of the insulin amyloid protofilament, respectively. The dye-protein complexes are likely to be stabilized by the hydrophobic, van der Waals, aromatic and electrostatic interactions. In summary, the above technique based on the multistep FRET
ISSN:2312-4334
2312-4539
DOI:10.26565/2312-4334-2019-4-06