An Improved Spectral Clustering Community Detection Algorithm Based on Probability Matrix

The similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection. First, the Markov chain is used to calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2020, Vol.2020 (2020), p.1-6
Hauptverfasser: Ren, Shuxia, Wu, Tao, Zhang, Shubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection. First, the Markov chain is used to calculate the transition probability between nodes, and the probability matrix is constructed by the transition probability. Then, the similarity graph is constructed with the mean probability matrix. Finally, community detection is achieved by optimizing the NCut objective function. The proposed algorithm is compared with SC, WT, FG, FluidC, and SCRW on artificial networks and real networks. Experimental results show that the proposed algorithm can detect communities more accurately and has better clustering performance.
ISSN:1026-0226
1607-887X
DOI:10.1155/2020/4540302