Discrete Integral and Discrete Derivative on Graphs and Switch Problem of Trees
For a vertex and edge weighted (VEW) graph G with a vertex weight function fG let Wα,β(G)=∑{u,v}⊆V(G)[αfG(u)×fG(v)+β(fG(u)+fG(v))]dG(u,v) where, α,β∈ℝ and dG(u,v) denotes the distance, the minimum sum of edge weights across all the paths connecting u,v∈V(G). Assume T is a VEW tree, and e∈ E(T) fails...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-04, Vol.11 (7), p.1678 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a vertex and edge weighted (VEW) graph G with a vertex weight function fG let Wα,β(G)=∑{u,v}⊆V(G)[αfG(u)×fG(v)+β(fG(u)+fG(v))]dG(u,v) where, α,β∈ℝ and dG(u,v) denotes the distance, the minimum sum of edge weights across all the paths connecting u,v∈V(G). Assume T is a VEW tree, and e∈ E(T) fails. If we reconnect the two components of T−e with new edge ϵ≠e such that, Wα,β(Tϵ\e=T−e+ϵ) is minimum, then ϵ is called a best switch (BS) of e w.r.t. Wα,β. We define three notions: convexity, discrete derivative, and discrete integral for the VEW graphs. As an application of the notions, we solve some BS problems for positively VEW trees. For example, assume T is an n-vertex VEW tree. Then, for the inputs e∈ E(T) and w,α,β ∈ℝ+, we return ϵ, Tϵ\e, and Wα,β(Tϵ\e) with the worst average time of O(logn) and the best time of O(1) where ϵ is a BS of e w.r.t. Wα,β and the weight of ϵ is w. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11071678 |