The evaluation of the rgb and multispectral camera on the unmanned aerial vehicle (uav) for the machine learning classification of maize
U ovoj studiji istražena je klasifikacija usjeva i tla korištenjem algoritma strojnoga učenja Random Forest, temeljenoga na crveno-zeleno-plavoj (RGB) i multispektralnoj kameri integriranoj na bespilotnome zrakoplovu. Područje istraživanja obuhvaćalo je dva podskupa poljoprivredne čestice kukuruza d...
Gespeichert in:
Veröffentlicht in: | Poljoprivreda (Osijek, Croatia) Croatia), 2022-01, Vol.28 (2), p.74-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | U ovoj studiji istražena je klasifikacija usjeva i tla korištenjem algoritma strojnoga učenja Random Forest, temeljenoga na crveno-zeleno-plavoj (RGB) i multispektralnoj kameri integriranoj na bespilotnome zrakoplovu. Područje istraživanja obuhvaćalo je dva podskupa poljoprivredne čestice kukuruza dimenzija 10 x 10 m u blizini Koške. Najveća ukupna točnost klasifikacije postignuta je u kombinaciji rubnoga crvenog (RE), bliskoga infracrvenog (NIR) kanala i indeksa normalizirane vegetacijske razlike (NDVI) u oba podskupa, s ukupnom točnošću od 99,8 %, odnosno 91,8 %. Provedena analiza pokazala je da je RGB kamera postigla dovoljnu točnost i da je prihvatljivo rješenje za klasifikaciju tla i vegetacije. Međutim, multispektralna kamera i spektralna analiza omogućile su detaljniju analizu, prvenstveno za spektralno slična područja. Ovaj je postupak temelj i za izračun gustoće usjeva i za otkrivanje korova s pomoću bespilotnih zrakoplova. Kako bi se osigurala učinkovitost klasifikacije usjeva u praktičnoj primjeni, potrebno je dodatno uključiti klase korova u trenutačnu klasu vegetacije i podijeliti ih na klase usjeva i korova.
This study investigated a crop and soil classification applying the Random Forest machine learning algorithm based on the red-green-blue (RGB) and multispectral sensor imaging deploying an unmanned aerial vehicle (UAV). The study area covered two 10 x 10 m subsets of a maize-sown agricultural parcel near Koška. The highest overall accuracy was obtained in the combination of the red edge (RE), near-infrared (NIR), and normalized difference vegetation index (NDVI) in both subsets, with a 99.8% and 91.8% overall accuracy, respectively. The conducted analysis proved that the RGB camera obtained sufficient accuracy and was an acceptable solution to the soil and vegetation classification. Additionally, a multispectral camera and spectral analysis allowed for a more detailed analysis, primarily of the spectrally similar areas. Thus, this procedure represents a basis for both the crop density calculation and weed detection while deploying an unmanned aerial vehicle. To ensure crop classification effectiveness in practical application, it is necessary to further integrate the weed classes in the current vegetation class and separate them into crop and weed classes. |
---|---|
ISSN: | 1330-7142 1848-8080 |
DOI: | 10.18047/poljo.28.2.10 |