Cystine and Methionine Deficiency Promotes Ferroptosis by Inducing B-Cell Translocation Gene 1

Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (−))-mediated cell death. CST/Met (−) depleted reduced and oxidized glutathione in hepatocyte-deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2021-09, Vol.10 (10), p.1543
Hauptverfasser: Cho, Il-Je, Kim, Doyeon, Kim, Eun-Ok, Jegal, Kyung-Hwan, Kim, Jae-Kwang, Park, Sang-Mi, Zhao, Rongjie, Ki, Sung-Hwan, Kim, Sang-Chan, Ku, Sae-Kwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (−))-mediated cell death. CST/Met (−) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (−)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (−) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (−) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (−)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (−), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (−). The results demonstrate that CST/Met (−) induces ferroptosis by activating ATF4-dependent BTG1 induction.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox10101543