Necessity Analysis of Bypass Diode for AC Module under Partial Shading Condition
To protect a photovoltaic module from the hot spot effect more efficiently, an AC (alternating current) module that contains a module-level MPPT (maximum power point tracking) has been put forward. In this paper, operation states of shadowed solar cells and relevant bypass diodes were studied throug...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-08, Vol.14 (16), p.4778 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To protect a photovoltaic module from the hot spot effect more efficiently, an AC (alternating current) module that contains a module-level MPPT (maximum power point tracking) has been put forward. In this paper, operation states of shadowed solar cells and relevant bypass diodes were studied through MATLAB/Simulink tools, and a commercial PV module was used to reveal the temperature change when working at different LMPP (local maximum power point). Experiment results show that bypass diode can reduce power loss for the AC module to some extent but has a limited effect on protecting the AC module from the hot spot effect. Instead, it is more likely to form a local hot spot when the bypass diode turns on, and the worst shading condition for the AC module with bypass diode is about 46.5% during work states. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14164778 |