Superelastic graphene aerogel-based metamaterials

Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-08, Vol.13 (1), p.4561-4561, Article 4561
Hauptverfasser: Wu, Mingmao, Geng, Hongya, Hu, Yajie, Ma, Hongyun, Yang, Ce, Chen, Hongwu, Wen, Yeye, Cheng, Huhu, Li, Chun, Liu, Feng, Jiang, Lan, Qu, Liangti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultralight, ultrastrong, and supertough graphene aerogel metamaterials combining with multi-functionalities are promising for future military and domestic applications. However, the unsatisfactory mechanical performances and lack of the multiscale structural regulation still impede the development of graphene aerogels. Herein, we demonstrate a laser-engraving strategy toward graphene meta-aerogels (GmAs) with unusual characters. As the prerequisite, the nanofiber-reinforced networks convert the graphene walls’ deformation from the microscopic buckling to the bulk deformation during the compression process, ensuring the highly elastic, robust, and stiff nature. Accordingly, laser-engraving enables arbitrary regulation on the macro-configurations of GmAs with rich geometries and appealing characteristics such as large stretchability of 5400% reversible elongation, ultralight specific weight as small as 0.1 mg cm −3 , and ultrawide Poisson’s ratio range from −0.95 to 1.64. Additionally, incorporating specific components into the pre-designed meta-structures could further achieve diversified functionalities. Graphene aerogels are highly porous and have very low density; despite this they also exhibit high mechanical strength. Here the authors present a laser-engraving strategy for producing graphene meta-aerogels with different configurations and properties.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32200-8