Recovery of Valuable Metals from Cathode—Anode Mixed Materials of Spent Lithium-Ion Batteries Using Organic Acids
Spent lithium-ion batteries (LIBs) contain a large number of valuable metals and will be an important strategic resource in the future. Therefore, recycling is extremely important. In this work, acetic acid and hydrogen peroxide were used as leaching agents to recover valuable metals (lithium, cobal...
Gespeichert in:
Veröffentlicht in: | Separations 2022-09, Vol.9 (9), p.259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spent lithium-ion batteries (LIBs) contain a large number of valuable metals and will be an important strategic resource in the future. Therefore, recycling is extremely important. In this work, acetic acid and hydrogen peroxide were used as leaching agents to recover valuable metals (lithium, cobalt, nickel, manganese, and aluminum) from cathode and anode materials (LiCoO2, LiAl0.2Co0.8O2, and C) of spent LIBs. The leaching solution and leaching residue were analyzed by inductive plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The optimum experimental conditions were obtained by changing the concentration of acetic acid, solid–liquid ratio, reaction temperature, time, and the concentration of hydrogen peroxide reducing agent. Under the experimental conditions of 2 M acetic acid, 4.0 vol.% H2O2, 20 g/L, and 70 °C for 40 min, the leaching rates of lithium, cobalt, nickel, manganese, and aluminum reached 98.56%, 94.61%, 96.39%, 97.97%, and 94.7%, respectively. This hydrometallurgical process is simple and environmentally friendly and maximizes the recovery of valuable metals from spent LIBs. |
---|---|
ISSN: | 2297-8739 2297-8739 |
DOI: | 10.3390/separations9090259 |