Numerical Simulation on Corneal Surface Behavior Applying Luminous Beam Levels
According to the World Health Organization (WHO), approximately 1.3 billion people experience visual impairments. Daily exposure to various levels of luminous beams directly impacts the front layer of the visible structure, leading to corneal injuries. To comprehensively understand this, we reconstr...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-11, Vol.13 (22), p.12132 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to the World Health Organization (WHO), approximately 1.3 billion people experience visual impairments. Daily exposure to various levels of luminous beams directly impacts the front layer of the visible structure, leading to corneal injuries. To comprehensively understand this, we reconstructed a three-dimensional model utilizing the PENTACAM® system. This enabled us to accurately determine the 50th percentile dimensions of the fibrous layer of the eyeball. Using the Ogden mathematical model, we developed a 3D cornea model, treating it as a soft tissue with predictable behavior, considering mechanical properties such as viscoelasticity, anisotropy, and nonlinearity. Employing the Finite Element Method (FEM), we analyzed five distinct test scenarios to explore the structural response of the cornea. Luminous beam properties were instrumental in establishing varying mechanical loads, leading to structural deformations on the corneal surface. Our findings reveal that when a smartphone’s screen emits light at a frequency of 651.72 THz from 200 mm, displacements in the corneal layer can reach up to 9.07 µm. The total load, computed by the number of photons, amounts to 7172.637 Pa. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app132212132 |