Mechanical Properties of Recycling Mixed Waste Plastic Predicted on Pallet Application Using Finite Element Analysis

The enormous use of plastic in any live sector will impact the waste plastic escalation. Unsorted and uncollected wasted plastic properly leads to the creation of mixed waste plastic in landfills. Therefore, mechanical recycling technology for processing mixed waste plastic into pasta phase has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2024-01, Vol.483, p.3019
Hauptverfasser: Taqwatomo, Galih, Novriadi, Dwi, Marsaputra Panjaitan, Boy, Prasetyo, Hariaman, Subagyo, Yusuf, Eka Mulyono, Aditya, Rahayu, Sri, Kusuma Arti, Dewi, Pradipta Arjasa Putra, Oka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The enormous use of plastic in any live sector will impact the waste plastic escalation. Unsorted and uncollected wasted plastic properly leads to the creation of mixed waste plastic in landfills. Therefore, mechanical recycling technology for processing mixed waste plastic into pasta phase has been developed. In this research, four sources of mixed waste plastic were implemented derived from household plastic bags (WPB), waste of plastic sack (WPS), waste of used carton beverage (WPAL) and waste plastic from drum pulper in pulp industry (WPI). Those materials were transformed into specimens through extrusion and compression molding, then tested for investigation the mechanical properties. A comparison of density, tensile strength, and compressive strength from each material was exposed comprehensively. Furthermore, finite element analysis (FEA) was employed to compute the reliability of recycle material properties in the pallet application under the racking condition test following ISO 8611 standard. Surprisingly, it was reported a potential performance with a maximum racking load until 700 kg for pallet product using all variants of mixed waste plastics. The maximum capacity was obtained based on consideration of the FEA result exhibited in tresca or maximum shear stress, total deformation, and factor of safety design.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202448303019